Comparison with {hash}

This vignette provides a comparison of {r2r} with the same-purpose CRAN package {hash}, which also offers an implementation of hash tables based on R environments. We first describe the features offered by both packages, and then perform some benchmark timing comparisons. The package versions referred to in this vignette are:

library(hash)
library(r2r)
packageVersion("hash")
#> [1] '2.2.6.3'
packageVersion("r2r")
#> [1] '0.1.2'

Features

Both {r2r} and {hash} hash tables are built on top of the R built-in environment data structure, and have thus a similar API. In particular, hash table objects have reference semantics for both packages. {r2r} hashtables are S3 class objects, whereas in {hash} the data structure is implemented as an S4 class.

Hash tables provided by r2r support arbitrary type keys and values, arbitrary key comparison and hash functions, and have customizable behaviour (either throw an exception or return a default value) upon query of a missing key.

In contrast, hash tables in hash currently support only string keys, with basic identity comparison (the hashing is performed automatically by the underlying environment objects); values can be arbitrary R objects. Querying missing keys through non-vectorized [[-subsetting returns the default value NULL, whereas queries through vectorized [-subsetting result in an error. On the other hand, hash also offers support for inverting hash tables (an experimental feature at the time of writing).

The table below summarizes the features of the two packages

Features supported by {r2r} and {hash}
Feature r2r hash
Basic data structure R environment R environment
Arbitrary type keys X
Arbitrary type values X X
Arbitrary hash function X
Arbitrary key comparison function X
Throw or return default on missing keys X
Hash table inversion X

Performance tests

We will perform our benchmark tests using the CRAN package microbenchmark.

library(microbenchmark)

Key insertion

We start by timing the insertion of:

N <- 1e4

random key-value pairs (with possible repetitions). In order to perform a meaningful comparison between the two packages, we restrict to string (i.e. length one character) keys. We can generate random keys as follows:

chars <- c(letters, LETTERS, 0:9)
random_keys <- function(n) paste0(
    sample(chars, n, replace = TRUE),
    sample(chars, n, replace = TRUE),
    sample(chars, n, replace = TRUE),
    sample(chars, n, replace = TRUE),
    sample(chars, n, replace = TRUE)
    )

set.seed(840)
keys <- random_keys(N)
values <- rnorm(N)

We test both the non-vectorized ([[<-) and vectorized ([<-) operators:

microbenchmark(
    `r2r_[[<-` = {
        for (i in seq_along(keys))
            m_r2r[[ keys[[i]] ]] <- values[[i]]
    },
    `r2r_[<-` = { m_r2r[keys] <- values },
    `hash_[[<-` = { 
        for (i in seq_along(keys))
            m_hash[[ keys[[i]] ]] <- values[[i]]
    },
    `hash_[<-` = m_hash[keys] <- values,
    
    times = 30, 
    setup = { m_r2r <- hashmap(); m_hash <- hash() }
)
#> Unit: milliseconds
#>       expr      min        lq      mean    median       uq      max neval
#>   r2r_[[<- 97.35690 151.67253 187.59483 193.47574 234.7740 277.7255    30
#>    r2r_[<- 73.90571 103.69061 159.41183 165.42399 200.4218 324.2356    30
#>  hash_[[<- 73.80975 126.54497 149.60832 139.75092 172.9261 260.1585    30
#>   hash_[<- 39.28803  64.79618  90.46477  99.42232 109.8349 141.6459    30

As it is seen, r2r and hash have comparable performances at the insertion of key-value pairs, with both vectorized and non-vectorized insertions, hash being somewhat more efficient in both cases.

Key query

We now test key query, again both in non-vectorized and vectorized form:

microbenchmark(
    `r2r_[[` = { for (key in keys) m_r2r[[ key ]] },
    `r2r_[` = { m_r2r[ keys ] },
    `hash_[[` = { for (key in keys) m_hash[[ key ]] },
    `hash_[` = { m_hash[ keys ] },
    
    times = 30,
    setup = { 
        m_r2r <- hashmap(); m_r2r[keys] <- values
        m_hash <- hash(); m_hash[keys] <- values
    }
)
#> Unit: milliseconds
#>     expr       min        lq     mean    median        uq       max neval
#>   r2r_[[ 88.545799 106.16686 157.7722 150.61003 188.24190 303.41547    30
#>    r2r_[ 87.467316 118.76546 154.7393 144.03654 181.63452 298.83506    30
#>  hash_[[  9.947555  10.52080  16.9615  13.24612  21.78511  43.20254    30
#>   hash_[ 55.392393  72.29879  91.9143  81.32744 108.42607 140.64172    30

For non-vectorized queries, hash is significantly faster (by one order of magnitude) than r2r. This is likely due to the fact that the [[ method dispatch is handled natively by R in hash (i.e. the default [[ method for environments is used ), whereas r2r suffers the overhead of S3 method dispatch. This is confirmed by the result for vectorized queries, which is comparable for the two packages; notice that here a single (rather than N) S3 method dispatch occurs in the r2r timed expression.

As an additional test, we perform the benchmarks for non-vectorized expressions with a new set of keys:

set.seed(841)
new_keys <- random_keys(N)
microbenchmark(
    `r2r_[[_bis` = { for (key in new_keys) m_r2r[[ key ]] },
    `hash_[[_bis` = { for (key in new_keys) m_hash[[ key ]] },
    
    times = 30,
    setup = { 
        m_r2r <- hashmap(); m_r2r[keys] <- values
        m_hash <- hash(); m_hash[keys] <- values
    }
)
#> Unit: milliseconds
#>         expr       min       lq     mean   median        uq      max neval
#>   r2r_[[_bis 62.837395 77.70263 97.82561 85.30933 117.82900 193.5376    30
#>  hash_[[_bis  9.809286 10.58638 13.39062 12.31619  15.48767  19.4628    30

The results are similar to the ones already commented. Finally, we test the performances of the two packages in checking the existence of keys (notice that here has_key refers to r2r::has_key, whereas has.key is hash::has.key):

set.seed(842)
mixed_keys <- sample(c(keys, new_keys), N)
microbenchmark(
    r2r_has_key = { for (key in mixed_keys) has_key(m_r2r, key) },
    hash_has_key = { for (key in new_keys) has.key(key, m_hash) },
    
    times = 30,
    setup = { 
        m_r2r <- hashmap(); m_r2r[keys] <- values
        m_hash <- hash(); m_hash[keys] <- values
    }
)
#> Unit: milliseconds
#>          expr      min       lq      mean    median        uq      max neval
#>   r2r_has_key  59.0308  63.3219  76.82297  73.23542  83.82676 156.3847    30
#>  hash_has_key 175.7794 203.7641 230.09715 226.40480 259.97378 283.9682    30

The results are comparable for the two packages, r2r being slightly more performant in this particular case.

Key deletion

Finally, we test key deletion. In order to handle name collisions, we will use delete() (which refers to r2r::delete()) and del() (which refers to hash::del()).

microbenchmark(
    r2r_delete = { for (key in keys) delete(m_r2r, key) },
    hash_delete = { for (key in keys) del(key, m_hash) },
    hash_vectorized_delete = { del(keys, m_hash) },
    
    times = 30,
    setup = { 
        m_r2r <- hashmap(); m_r2r[keys] <- values
        m_hash <- hash(); m_hash[keys] <- values
    }
)
#> Unit: milliseconds
#>                    expr        min         lq       mean     median         uq
#>              r2r_delete 108.364266 130.743575 154.582793 150.147717 171.749954
#>             hash_delete  60.979746  67.823765  86.521171  84.526460  97.832571
#>  hash_vectorized_delete   1.860043   2.218743   2.463795   2.428009   2.654858
#>         max neval
#>  269.500612    30
#>  158.779385    30
#>    3.173727    30

The vectorized version of hash significantly outperforms the non-vectorized versions (by roughly two orders of magnitude in speed). Currently, r2r does not support vectorized key deletion 1.

Conclusions

The two R packages r2r and hash offer hash table implementations with different advantages and drawbacks. r2r focuses on flexibility, and has a richer set of features. hash is more minimal, but offers superior performance in some important tasks. Finally, as a positive note for both parties, the two packages share a similar API, making it relatively easy to switch between the two, according to the particular use case needs.


  1. This is due to complications introduced by the internal hash collision handling system of r2r.↩︎