Comparison with {hash}

This vignette provides a comparison of {r2r} with the same-purpose CRAN package {hash}, which also offers an implementation of hash tables based on R environments. We first describe the features offered by both packages, and then perform some benchmark timing comparisons. The package versions referred to in this vignette are:

library(hash)
library(r2r)
packageVersion("hash")
#> [1] '2.2.6.3'
packageVersion("r2r")
#> [1] '0.1.2'

Features

Both {r2r} and {hash} hash tables are built on top of the R built-in environment data structure, and have thus a similar API. In particular, hash table objects have reference semantics for both packages. {r2r} hashtables are S3 class objects, whereas in {hash} the data structure is implemented as an S4 class.

Hash tables provided by r2r support arbitrary type keys and values, arbitrary key comparison and hash functions, and have customizable behaviour (either throw an exception or return a default value) upon query of a missing key.

In contrast, hash tables in hash currently support only string keys, with basic identity comparison (the hashing is performed automatically by the underlying environment objects); values can be arbitrary R objects. Querying missing keys through non-vectorized [[-subsetting returns the default value NULL, whereas queries through vectorized [-subsetting result in an error. On the other hand, hash also offers support for inverting hash tables (an experimental feature at the time of writing).

The table below summarizes the features of the two packages

Features supported by {r2r} and {hash}
Feature r2r hash
Basic data structure R environment R environment
Arbitrary type keys X
Arbitrary type values X X
Arbitrary hash function X
Arbitrary key comparison function X
Throw or return default on missing keys X
Hash table inversion X

Performance tests

We will perform our benchmark tests using the CRAN package microbenchmark.

library(microbenchmark)

Key insertion

We start by timing the insertion of:

N <- 1e4

random key-value pairs (with possible repetitions). In order to perform a meaningful comparison between the two packages, we restrict to string (i.e. length one character) keys. We can generate random keys as follows:

chars <- c(letters, LETTERS, 0:9)
random_keys <- function(n) paste0(
    sample(chars, n, replace = TRUE),
    sample(chars, n, replace = TRUE),
    sample(chars, n, replace = TRUE),
    sample(chars, n, replace = TRUE),
    sample(chars, n, replace = TRUE)
    )

set.seed(840)
keys <- random_keys(N)
values <- rnorm(N)

We test both the non-vectorized ([[<-) and vectorized ([<-) operators:

microbenchmark(
    `r2r_[[<-` = {
        for (i in seq_along(keys))
            m_r2r[[ keys[[i]] ]] <- values[[i]]
    },
    `r2r_[<-` = { m_r2r[keys] <- values },
    `hash_[[<-` = { 
        for (i in seq_along(keys))
            m_hash[[ keys[[i]] ]] <- values[[i]]
    },
    `hash_[<-` = m_hash[keys] <- values,
    
    times = 30, 
    setup = { m_r2r <- hashmap(); m_hash <- hash() }
)
#> Unit: milliseconds
#>       expr      min        lq     mean    median        uq      max neval
#>   r2r_[[<- 77.95462 111.90140 136.4376 129.66808 164.55963 205.3060    30
#>    r2r_[<- 67.41453  79.78414 118.9378 121.87037 141.32023 194.2556    30
#>  hash_[[<- 65.11005  96.89465 115.2738 112.28496 141.68162 182.8580    30
#>   hash_[<- 35.36204  46.31865  63.4867  64.40233  77.93003 113.4921    30

As it is seen, r2r and hash have comparable performances at the insertion of key-value pairs, with both vectorized and non-vectorized insertions, hash being somewhat more efficient in both cases.

Key query

We now test key query, again both in non-vectorized and vectorized form:

microbenchmark(
    `r2r_[[` = { for (key in keys) m_r2r[[ key ]] },
    `r2r_[` = { m_r2r[ keys ] },
    `hash_[[` = { for (key in keys) m_hash[[ key ]] },
    `hash_[` = { m_hash[ keys ] },
    
    times = 30,
    setup = { 
        m_r2r <- hashmap(); m_r2r[keys] <- values
        m_hash <- hash(); m_hash[keys] <- values
    }
)
#> Unit: milliseconds
#>     expr       min        lq      mean    median        uq       max neval
#>   r2r_[[ 82.308004 101.45874 142.19492 146.64135 171.02004 213.82503    30
#>    r2r_[ 84.968745 102.26190 132.39803 135.61089 155.69213 180.39458    30
#>  hash_[[  9.352277  10.45392  14.73270  12.83948  18.37082  32.36551    30
#>   hash_[ 54.899601  65.06428  83.52561  74.87247  96.40873 148.84233    30

For non-vectorized queries, hash is significantly faster (by one order of magnitude) than r2r. This is likely due to the fact that the [[ method dispatch is handled natively by R in hash (i.e. the default [[ method for environments is used ), whereas r2r suffers the overhead of S3 method dispatch. This is confirmed by the result for vectorized queries, which is comparable for the two packages; notice that here a single (rather than N) S3 method dispatch occurs in the r2r timed expression.

As an additional test, we perform the benchmarks for non-vectorized expressions with a new set of keys:

set.seed(841)
new_keys <- random_keys(N)
microbenchmark(
    `r2r_[[_bis` = { for (key in new_keys) m_r2r[[ key ]] },
    `hash_[[_bis` = { for (key in new_keys) m_hash[[ key ]] },
    
    times = 30,
    setup = { 
        m_r2r <- hashmap(); m_r2r[keys] <- values
        m_hash <- hash(); m_hash[keys] <- values
    }
)
#> Unit: milliseconds
#>         expr       min       lq      mean   median       uq       max neval
#>   r2r_[[_bis 63.074644 79.76706 101.86664 98.88345 121.2553 175.33616    30
#>  hash_[[_bis  9.364631 10.48906  13.08646 11.59266  14.9242  26.65388    30

The results are similar to the ones already commented. Finally, we test the performances of the two packages in checking the existence of keys (notice that here has_key refers to r2r::has_key, whereas has.key is hash::has.key):

set.seed(842)
mixed_keys <- sample(c(keys, new_keys), N)
microbenchmark(
    r2r_has_key = { for (key in mixed_keys) has_key(m_r2r, key) },
    hash_has_key = { for (key in new_keys) has.key(key, m_hash) },
    
    times = 30,
    setup = { 
        m_r2r <- hashmap(); m_r2r[keys] <- values
        m_hash <- hash(); m_hash[keys] <- values
    }
)
#> Unit: milliseconds
#>          expr       min        lq      mean    median       uq      max neval
#>   r2r_has_key  57.43633  75.20231  90.76308  85.93859 100.5862 132.8748    30
#>  hash_has_key 184.78087 197.51958 246.07578 244.55391 277.6016 367.0266    30

The results are comparable for the two packages, r2r being slightly more performant in this particular case.

Key deletion

Finally, we test key deletion. In order to handle name collisions, we will use delete() (which refers to r2r::delete()) and del() (which refers to hash::del()).

microbenchmark(
    r2r_delete = { for (key in keys) delete(m_r2r, key) },
    hash_delete = { for (key in keys) del(key, m_hash) },
    hash_vectorized_delete = { del(keys, m_hash) },
    
    times = 30,
    setup = { 
        m_r2r <- hashmap(); m_r2r[keys] <- values
        m_hash <- hash(); m_hash[keys] <- values
    }
)
#> Unit: milliseconds
#>                    expr      min         lq       mean     median         uq
#>              r2r_delete 117.6917 147.632102 181.220480 182.280734 215.829767
#>             hash_delete  60.4871  77.834073  96.132592  93.308810 115.690556
#>  hash_vectorized_delete   1.8343   2.633541   3.115679   3.000024   3.639416
#>         max neval
#>  248.829525    30
#>  136.946418    30
#>    5.218831    30

The vectorized version of hash significantly outperforms the non-vectorized versions (by roughly two orders of magnitude in speed). Currently, r2r does not support vectorized key deletion 1.

Conclusions

The two R packages r2r and hash offer hash table implementations with different advantages and drawbacks. r2r focuses on flexibility, and has a richer set of features. hash is more minimal, but offers superior performance in some important tasks. Finally, as a positive note for both parties, the two packages share a similar API, making it relatively easy to switch between the two, according to the particular use case needs.


  1. This is due to complications introduced by the internal hash collision handling system of r2r.↩︎