{hash}
This vignette provides a
comparison of {r2r}
with the same-purpose CRAN package {hash}
,
which also offers an implementation of hash tables based on R
environments. We first describe the features offered by both packages,
and then perform some benchmark timing comparisons. The package versions
referred to in this vignette are:
library(hash)
library(r2r)
packageVersion("hash")
#> [1] '2.2.6.3'
packageVersion("r2r")
#> [1] '0.1.2'
Both {r2r}
and {hash}
hash tables are built
on top of the R built-in environment
data structure, and
have thus a similar API. In particular, hash table objects have
reference semantics for both packages. {r2r}
hashtable
s are S3 class objects, whereas in
{hash}
the data structure is implemented as an S4
class.
Hash tables provided by r2r
support arbitrary type keys
and values, arbitrary key comparison and hash functions, and have
customizable behaviour (either throw an exception or return a default
value) upon query of a missing key.
In contrast, hash tables in hash
currently support only
string keys, with basic identity comparison (the hashing is performed
automatically by the underlying environment
objects);
values can be arbitrary R objects. Querying missing keys through
non-vectorized [[
-subsetting returns the default value
NULL
, whereas queries through vectorized
[
-subsetting result in an error. On the other hand,
hash
also offers support for inverting hash tables (an
experimental feature at the time of writing).
The table below summarizes the features of the two packages
Feature | r2r | hash |
---|---|---|
Basic data structure | R environment | R environment |
Arbitrary type keys | X | |
Arbitrary type values | X | X |
Arbitrary hash function | X | |
Arbitrary key comparison function | X | |
Throw or return default on missing keys | X | |
Hash table inversion | X |
We will perform our benchmark tests using the CRAN package microbenchmark
.
We start by timing the insertion of:
random key-value pairs (with possible repetitions). In order to perform a meaningful comparison between the two packages, we restrict to string (i.e. length one character) keys. We can generate random keys as follows:
chars <- c(letters, LETTERS, 0:9)
random_keys <- function(n) paste0(
sample(chars, n, replace = TRUE),
sample(chars, n, replace = TRUE),
sample(chars, n, replace = TRUE),
sample(chars, n, replace = TRUE),
sample(chars, n, replace = TRUE)
)
set.seed(840)
keys <- random_keys(N)
values <- rnorm(N)
We test both the non-vectorized ([[<-
) and vectorized
([<-
) operators:
microbenchmark(
`r2r_[[<-` = {
for (i in seq_along(keys))
m_r2r[[ keys[[i]] ]] <- values[[i]]
},
`r2r_[<-` = { m_r2r[keys] <- values },
`hash_[[<-` = {
for (i in seq_along(keys))
m_hash[[ keys[[i]] ]] <- values[[i]]
},
`hash_[<-` = m_hash[keys] <- values,
times = 30,
setup = { m_r2r <- hashmap(); m_hash <- hash() }
)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> r2r_[[<- 77.15060 118.74840 141.26154 134.67349 172.41469 207.0194 30
#> r2r_[<- 65.01318 72.81439 107.65670 110.74753 132.95282 167.9449 30
#> hash_[[<- 67.79844 94.15135 111.17117 107.07354 135.81654 167.3922 30
#> hash_[<- 35.98419 61.81443 68.84952 69.63259 77.61402 110.1348 30
As it is seen, r2r
and hash
have comparable
performances at the insertion of key-value pairs, with both vectorized
and non-vectorized insertions, hash
being somewhat more
efficient in both cases.
We now test key query, again both in non-vectorized and vectorized form:
microbenchmark(
`r2r_[[` = { for (key in keys) m_r2r[[ key ]] },
`r2r_[` = { m_r2r[ keys ] },
`hash_[[` = { for (key in keys) m_hash[[ key ]] },
`hash_[` = { m_hash[ keys ] },
times = 30,
setup = {
m_r2r <- hashmap(); m_r2r[keys] <- values
m_hash <- hash(); m_hash[keys] <- values
}
)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> r2r_[[ 91.927319 120.55399 154.44732 161.86267 185.25701 225.45467 30
#> r2r_[ 85.280613 98.54987 132.75034 137.46910 155.10621 193.44932 30
#> hash_[[ 9.921901 10.97999 14.20868 12.40087 17.91414 21.59114 30
#> hash_[ 56.681264 66.16818 86.83520 85.10289 98.88669 156.46972 30
For non-vectorized queries, hash
is significantly faster
(by one order of magnitude) than r2r
. This is likely due to
the fact that the [[
method dispatch is handled natively by
R in hash
(i.e. the default [[
method
for environment
s is used ), whereas r2r
suffers the overhead of S3 method dispatch. This is confirmed by the
result for vectorized queries, which is comparable for the two packages;
notice that here a single (rather than N
) S3 method
dispatch occurs in the r2r
timed expression.
As an additional test, we perform the benchmarks for non-vectorized expressions with a new set of keys:
set.seed(841)
new_keys <- random_keys(N)
microbenchmark(
`r2r_[[_bis` = { for (key in new_keys) m_r2r[[ key ]] },
`hash_[[_bis` = { for (key in new_keys) m_hash[[ key ]] },
times = 30,
setup = {
m_r2r <- hashmap(); m_r2r[keys] <- values
m_hash <- hash(); m_hash[keys] <- values
}
)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> r2r_[[_bis 65.87390 78.86331 97.91370 97.71733 112.59728 140.82823 30
#> hash_[[_bis 10.21583 11.43801 15.44436 12.34021 14.87279 46.57487 30
The results are similar to the ones already commented. Finally, we
test the performances of the two packages in checking the existence of
keys (notice that here has_key
refers to
r2r::has_key
, whereas has.key
is
hash::has.key
):
set.seed(842)
mixed_keys <- sample(c(keys, new_keys), N)
microbenchmark(
r2r_has_key = { for (key in mixed_keys) has_key(m_r2r, key) },
hash_has_key = { for (key in new_keys) has.key(key, m_hash) },
times = 30,
setup = {
m_r2r <- hashmap(); m_r2r[keys] <- values
m_hash <- hash(); m_hash[keys] <- values
}
)
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> r2r_has_key 62.18203 69.42541 88.18813 85.08335 98.78978 133.2706 30
#> hash_has_key 184.18959 199.30432 249.92223 242.19929 302.40733 354.1190 30
The results are comparable for the two packages, r2r
being slightly more performant in this particular case.
Finally, we test key deletion. In order to handle name collisions, we
will use delete()
(which refers to
r2r::delete()
) and del()
(which refers to
hash::del()
).
microbenchmark(
r2r_delete = { for (key in keys) delete(m_r2r, key) },
hash_delete = { for (key in keys) del(key, m_hash) },
hash_vectorized_delete = { del(keys, m_hash) },
times = 30,
setup = {
m_r2r <- hashmap(); m_r2r[keys] <- values
m_hash <- hash(); m_hash[keys] <- values
}
)
#> Unit: milliseconds
#> expr min lq mean median uq
#> r2r_delete 115.821059 127.226384 179.257774 178.427584 223.1466
#> hash_delete 66.979756 78.954774 102.454344 97.385456 115.3295
#> hash_vectorized_delete 2.181686 2.872363 3.378992 3.429627 3.9547
#> max neval
#> 269.902141 30
#> 225.925614 30
#> 4.832175 30
The vectorized version of hash
significantly outperforms
the non-vectorized versions (by roughly two orders of magnitude in
speed). Currently, r2r
does not support vectorized key
deletion 1.
The two R packages r2r
and hash
offer hash
table implementations with different advantages and drawbacks.
r2r
focuses on flexibility, and has a richer set of
features. hash
is more minimal, but offers superior
performance in some important tasks. Finally, as a positive note for
both parties, the two packages share a similar API, making it relatively
easy to switch between the two, according to the particular use case
needs.
This is due to complications introduced by the internal
hash collision handling system of r2r
.↩︎